INTEGRATED CIRCUIT SPECIFICATION
 for the
 DENISE
 MICROPROCESSOR

Information contained herein is the unpublished, confidential and trade secret property of Commodore Business Machines, Inc. Use, reproduction or disclosure of this information without prior explicit written permission of Commodore is strictly prohibited.

```
This Specification describes the requirements for a
Display ENcoder Integrated Circuit (I.C.).
Main Function: display data buffer,
    encode display object to RGB colors.
    Bitplane & Sprite display.
    Parallel data from data bus is
    retained in six (6) Bitplane and eight
    pairs of Sprite data buffers.
    Bitplane Data loaded and serialized
    during display activity.
    Sprite Data loaded during display
    inactivity - individual serialization
    occurs when Sprite position Compare
    logic detects equality between the
    Sync Counter and any Sprite Position
    Register.
    Six (6) lines of Bitplane & eight (8)
    pairs of serial data go to Priority
    control logic which selects only one
    (1) of the Sprites or one (1) of the
    separate Bitmap images to produce the
    five (5) bit color select code at its'
    output. This five (5) bit code then
    selects one of the thirty-two (32)
    color registers to produce the twelve
    (12) bit RGB video output.
    The Bitplane and Sprite serial lines
    also go to the Collision Detect Logic,
    which detects real time coincidence
    between them, and sets appropriate
    bits in the Collision Storage register.
    This register is read and cleared by the
    68000.
    The four (4) "mouse counters" are
    controlled by the two (2) mouse-joystick
    connectors. These count the pulses
    representing the horizontal and vertical
    motion of two (2) "mouse" controllers,
    and are read by the 68000.
```

DENISE Chip Elements: 32 Color Registers.
Bitplane Priority and Control Registers.
Color Select Decoder.
Priority Control Logic.
16 Sprite Serial Lines.
Sprite Data Registers.
Bit Plane Control Registers
Two (2) Mouse Connectors.
Sprite Position Compare Logic.
Sprite Horizontal Control Registers.
Bit Plane Serializer
Collision Detect Logic.
Collision Control Register.
Collision Storage Register.
Buffer - Data Bus.
Buffer - Register Address Decode.
Bit Plane Data Registers
Video: RGB.
Sprite Serialization
1.2 PIN CONFIGURATION

D6	01	48	D07
D5	02	47	D08
D4	03	46	D09
D3	04	45	D10
D2	05	44	D11
D1	06	43	D12
D0	07	42	D13
M1 H	08	41	D14
MOH	09	40	D15
RGA8	10	39	M1V
RGA7	11	38	MOV
RGA6	12	37	VSS
RGA5	13	36	CAS*
RGA4	14	35	C7M
RGA3	15	34	CDAC
RGA2	16	33	ZD*
RGA1	17	32	CBL*
BURST*		18	31 \|
VCC	19	30	G2
R0	20	29	G1
R1	21	28	G0
R2	22	27	B3
R3	23	26	B2
B0	24	25	B1

register	address	R/W	function
BPLxDAT	110	- 11A	W Bit plane x data (parallel to serial convert). These registers receive the DMA data fetched from RAM by the Bit Plane address pointers. They may also be written by either micro. They act as a 6 word parallel-to-serial buffer for up to 6 memory "Bit Planes". ($x=1$ to 6) The parallel to serial conversion is triggered whenever bit plane \#1 is written, indicating the transmission of all bit planes for the next 16 pixels. The MSB is output first, and is therefore always on the left.
BPLCONO	100		W Bit plane control reg. (misc control bits)
BPLCON1	102		W Bit plane control reg. (horiz scroll control)
BPLCON2	104		W Bit plane control reg. (video priority control) These registers control the operation of the Bit Planes and various aspects of the display.
BPLCON3	106		W Bit plane control reg. (enhanced features)

```
\begin{tabular}{llllc} 
BIT\# & BPLCON0 & BPLCON1 & BPLCON2 & BPLCON3 \\
---- & -------- & ------- & ------- & ------ \\
15 & HIRES & x & x & x \\
14 & BPUC2 & x & ZDBPSEL2 & x \\
13 & BPUC1 & x & ZDBPSEL1 & x \\
12 & BPUC0 & x & ZDBPSEL0 & x \\
11 & HAM & x & ZDBPEN & x \\
10 & DPF & x & ZDCTEN & x \\
09 & COLOR & x & KILLEHB & x \\
08 & GAUD & x & x & x \\
07 & y & PF2H3 & x & x \\
06 & SHRES & PF2H2 & PF2PRI & x \\
05 & y & PF2H1 & PF2P2 & BRDRBLNK \\
04 & y & PF2H0 & PF2P1 & BRDNTRAN \\
03 & y & PF1H3 & PF2P0 & x \\
02 & y & PF1H2 & PF1P2 & ZDCLKEN \\
01 & y & PF1H1 & PF1P1 & x \\
00 & ENBPLCN3 & PF1H0 & PF1P0 & EXTBLKEN
\end{tabular}
x= don't care; but drive to 0 for upward compatibility ! \(\mathrm{y}=\) register bits contained in AGNUS, not defined here.
HIRES=High resolution(640*200/640*400interlace) mode BPU =Bit plane use code 000-110 (NONE thru 6 inclusive) HAM=Hold and Modify mode
DPF=Double playfield (PF1=odd PF2=even bit planes) not available in SHRES mode, although priority and scrolling for the BP1 \& 2 are separate. (If BPU=6 and \(H A M=0\) and \(D P F=0\) a special mode is defined that allows bitplane 6 to cause an intensity reduction of the other 5 bitplanes. The color register output selected by 5 bitplanes is shifted to half intensity by the 6th bitplane. This is
called EXTRA-HALFBRITE Mode.
COLOR= Composite video COLOR enable
GAUD=Genlock audio enable. This level appears on the ZD pin on Denise during all blanking periods.
SHRES= Super-hi-res mode, 35 nS pixel width
ENBPLCN3= When set enables all the new features in BPLCON3;
when reset Denise returns to normal operation
PF2Hx= Playfield 2 horizontal scroll code
PF1Hx= Playfield 1 horizontal scroll code
Scroll LSB is 1 pixel @ low res, 2 at HRES, 4 @ SHRES
ZDBPSELx= 3 bit field which selects which Bit plane is to be used for ZD when ZDBBPEN is set;000 selects BP1 and 101 selects BP6. \(110 \& 111\) are reserved for future use.
ZDBPEN= causes \(Z D\) pin to mirror bitplane selected by
ZDBPSELx bits. This does not disable the ZD mode defined by ZDCTEN, but rather is "ored" with it.
ZDCTEN= causes ZD pin to mirror bit \#15 of the
active color table entry; for SHRES mode bit \#14 needs to be set to the same value as bit \#15 in each color table entry. When ZDCTEN is reset \(Z D\) reverts to mirroring color(0).
KILLEHB= disables Extra Half Brite mode.
PF2PRI= gives Playfield 2 priority over Playfield 1.
PF2Px= Playfield 2 priority code (with resp. to sprites)
PF1Px= Playfield 1 priority code (with resp. to sprites)
BRDRBLNK= "border area" is blanked instead of color(0).
BRDNTRAN= "border area" is non-transparent(ZD pin is low when border is displayed.
ZDCLKEN= ZD pin outputs a 14 MHZ clock whose falling edge coincides with high-res (7MHZ) video data. This bit when set disables all other ZD functions.
```

EXTBLKEN= CBL* pin on Denise supplies blanking instead
of the internal fixed decodes. This pin comes from the

CSY* pin of Agnus, and if BLANKEN is set there (BEAMCONO)
as well, the variable blanking will be used in Denise.

CLXDAT 00E R Collision Data Register
(Read and Clear)
This address reads (and clears) the collision detection register. The bit assignments are below.
NOTE: Playfield 1 is all odd numbered enabled bit planes.
Playfield 2 is all even numbered enabled bit planes.

T1 of COLOR00 thru COLOR31 sets ZD pin HI when color is selected in all video modes. In super-hi-res mode $T 2$ sets $Z D$ pin $H I$ as well (Bit \#14 is unused in modes other than super-hi-res).

DENISEID 07C R Denise revision level
The early Denise revision levels do not have this register, so whatever was previously written to the data bus on the previous access will still be there during this read cycle. Current revs (8373Rx) return hex (FC) while prototype 8369Rx returned hex(FE).

DIWHIGH IE4 W Display Window upper bits - start/stop This is an added register for the HIRES chips, allows larger start \& stop ranges. If it is not written, DIWSTART/DIWSTOP supply all bits required for start \& stop values. If it is written subsequent to DIWSTART or DIWSTOP then it provides additional horizontal bits:

Don't care bits (x) should always be set to 0 to maintain upwards compatibility. AGNUS bits (y) are defined in a separate document.

```
DIWSTOP 090 W Display Window Stop horiz. bits
DIWSTRT 08E W Display Window Start horiz. bits
    These registers control the Display Window size & position,
    by locating the beginning & end of the horizontal display
    line.
Bit# 15 14 13 12 11 10
Use y y y y y y y y H7 H6 H5 H4 H3 H2 H1 H0
Don't care bits (x) should always be set to 0 to maintain
upwards compatibility. AGNUS bits (y) are defined in a separate
document.
```


To Detect Read these Counter Bits

register	addr	ss \quad R/W function
SPRxDATA	144	W Sprite x image data register A.
SPRxDATB	146	Sprite x image data register B. These registers buffer the Sprite image data. They are usually loaded by either processor at any time. When a horizontal comparison occurs the buffers are dumped into shift registers and serially outputted to the display, MSB first on the left. NOTE: Writing to the A buffer enables (arms) the sprite. Writing to the SPRxCTL register disables the Sprite. If enabled, data in the A and B buffers will be outputted whenever the beam counter equals the Sprite horizontal position value in the SPRxPOS register.
STREQU		$038 \quad$S \quad Strobe for horiz sync with VB and EQU.
STRVBL		03A \quad S \quad Strobe for horiz sync
STRHOR		03C S Strobe for horiz sync.
STRLONG		03E S Strobe for identification
		One of the first 3 strobe addresses above is placed on the dest. addr. bus during the first refresh time slot. The 4 th strobe shown above is used during the second refresh time slot of every other line, to identify lines with long counts (228). There are 4 refresh time slots, and any not used for strobes will leave a null (FF) address on the dest. addr. bus.

2.2 PIN DESCRIPTION

PIN	DESCRIPTION	FUN	DESIGN
1	DATA BUS 6	I/O	D 6
2	DATA BUS 5	I/O	D5
3	DATA BUS 4	I/O	D4
4	DATA BUS 3	I/O	D3
5	DATA BUS 2	I/O	D2
6	DATA BUS 1	I/O	D1
7	DATA BUS 0	I/O	D0
8	MOUSE 1 HORIZONTAL	I	M1H
9	MOUSE 0 HORIZONTAL	I	MOH
10	REGISTER ADDRESS 8	I	RGA8
11	REGISTER ADDRESS 7	I	RGA7
12	REGISTER ADDRESS 6	I	RGA 6
13	REGISTER ADDRESS 5	I	RGA5
14	REGISTER ADDRESS 4	I	RGA 4
15	REGISTER ADDRESS 3	I	RGA3
16	REGISTER ADDRESS 2	I	RGA2
17	REGISTER ADDRESS 1	I	RGA1
18	COLOR BURST	0	BURST *
19	+5 volt	I	Vcc
20	VIDEO RED BIT 0	0	R0
21	VIDEO RED BIT 1	0	R1
22	VIDEO RED BIT 2	0	R2
23	VIDEO RED BIT 3	0	R3
24	VIDEO BLUE BIT 0	0	B0
25	VIDEO BLUE BIT 1	0	B1
26	VIDEO BLUE BIT 2	0	B2
27	VIDEO BLUE BIT 3	0	B3
28	VIDEO GREEN BIT 0	0	G0
29	VIDEO GREEN BIT 1	0	G1
30	VIDEO GREEN BIT 2	0	G2
31	VIDEO GREEN BIT 3	0	G3
32	COMPOSITE BLANKING	I	CBL*
33	BACKGROUND INDICATOR	0	ZD*
34	7.15909MHZ QUADRATURE CLOCK	I	CDAC
35	7.15909 MHz	I	C7M
36	COLOR CLOCK	I	CAS *
37	GROUND	I	VSS
38	MOUSE 0 VERTICAL	I	MOV
39	MOUSE 1 VERTICAL	I	M1V
40	DATA BUS 15	I/O	D15
41	DATA BUS 14	I/O	D14
42	DATA BUS 13	I/O	D13
43	DATA BUS 12	I/O	D12
44	DATA BUS 11	I/O	D11
45	DATA BUS 10	I/O	D10
46	DATA BUS 09	I/O	D09
47	DATA BUS 08	I/O	D08
48	DATA BUS 07	I/O	D07

* - Indicates "ACTIVE LOW SIGNAL

3.1 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed may cause permanent damage to the circuit. Functional operation of the device at these or any conditions other than those indicated in the operating conditions of this specification is not implied. Exposure to the maximum ratings for extended periods may adversely affect device reliability.

characteristic	min	max	units
3.1.1 ambient temperature under bias	-25	+125	deg. c.
3.1 .2 storage temperature	-65	+150	deg. c.
3.1 .3 applied supply voltage	-0.5	+7.0	volts
3.1 .4 applied output voltage	-0.5	+5.5	volts
3.1 .5 applied input voltage	-2.0	+7.0	volts
3.1 .6 power dissipation	-	1.5	watt
3.1 .7 output current(1 pin at a time)	-100	+100	mA

3.2 OPERATING CONDITIONS

All electrical characteristics are specified over the entire range of the operating conditions unless specifically noted. All voltages are referenced to Vss $=0.0 \mathrm{~V}$.

Condition	Min	Max	Units
3.2.1 Supply voltage (Vcc)	4.75	5.25	volts
3.2.2 Free air temperature	0	70	Deg. C.

3.3 INTERFACE CHARACTERISTICS

	Characteristic	Symbol	Min	Max	units	Conditions
3.3.1	Input high level	Vih	2.0	Vcc+1	volts	
3.3.2	Input low level	Vil	-0.5	0.8	voltsa	except clks
		-0.5	0.3 vo		C7M, CDA	, CAS*
3.3 .3	Output high level	Voh	2.4	-	volts	Ioh = -200ua
3.3.4	Output low level	Vol	-	0.4	volts	Iol $=3.2 \mathrm{ma}$
3.3 .5	Input leakage	Iin	-10	10	uA	$0.0 v<V i n<V c c$
3.3 .6	Output leakage	Ilkg	-10	10	uA	$0.4 \mathrm{v}<$ Vout<2.4v
		(Deselected)				
3.3 .7	Supply current	$(\mathrm{Vcc}=5.25 \mathrm{~V})$				

3.4 SWITCHING CHARACTERISTICS

Switching characteristics are specified for input waveforms switching between 0.4 V low level and 2.4 V high level with 10\%-90\% rise and fall times of $10 n s$. Outputs are loaded at the rated interface conditions with 130pf total capacitive load (including fixturing). All time measurements of driven signals are referenced to 1.5 V on inputs and outputs. Time measurements of transitions into high impedance are referenced to Vol+0.2V and Voh-0.2V levels.

All timings below assume CAS* period of 280 nS , and C7M,CDAC periods of 140 nS , and CDAC leads C7M by 35 nS .

3.4 .4	Clock rise/fall	Trf 0	10	nS	CDAC, C7M, CAS*
3.4 .5	C7M, CDAC High time	Tph C7M, CDAC	65	-	nS
3.4 .6	C7M, CDAC Low time	Tpl C7M, CDAC	65	-	nS
3.4 .7	RGA setup to C7M^	Ts RGAx	15	-	nS while CAS* HI
3.4 .8	RGA hold from C7Mv	Th RGAx	60	-	nS while CAS* HI
3.4 .9	Dx out dly fr CAS*v	Td Dx	0	90	nS
3.4 .10	Dx inp setup CAS*^	Ts Dx	50	-	nS
3.4 .11	Dx inp hold CAS*^	Th Dx	0	-	nS
3.4 .12	$\mathrm{MxV}, \mathrm{MxH}$ setup $\mathrm{C} 7 \mathrm{M}^{\wedge}$	Ts MxV, MxH	30	-	nS
3.4 .13	MxV, MxH hold C7M^	Th MxV, MxH	45	-	nS
3.4 .14	BURST* dly fr C7M^	Td BURST*	0	140	nS
3.4 .15	ZD*, Rx, Gx, Bx dly	Td VID	15	50	nS
3.4 .16	CBL* setup to C7M^	Ts CBL*	30	-	nS
3.4 .17	CBL* hold to C7M^	Th CBL*	10	-	nS

Parts shall be marked with Commodore part number, manufacturers identification and EIA data code. Pin 1 shall be identified.

4.2 PACKAGING

The circuit shall be packaged in a standard plastic or ceramic 48 pin dip with 0.100 " pin to pin spacing and 0.600 " pin row to pin row spacing.

